
MOTION OF A GAS BUBBLE IN A VISCOUS VIBRATING LIQUID 

V. L. Sennitskii UDC 532.529 

There are many works ([1-5], for example) containing theoretical results on the motion 
of a gas bubble in a vibrating liquid. In the present paper we consider the following prob- 
lem. A closed container is filled with a viscous incompressible liquid in which there is a 
gas bubble and the container performs a specified periodic translational vibration relative 
to an inertial rectangular coordinate system, X, Y, Z (the period of the vibrations is T and 
the container vibrates along the Z axis). The container is deformed in a specified way 
(compressed and released). The position of the gas bubble relative to the coordinate sys- 
tem X, Y, Z is characterized by the radius vector 

S = ~ RdXdYdZ,  

~XYZ 

where R = (X, Y, Z); ~XYZ is the region occupied by the gas (i.e., the gas bubble), and Q 
is the volume of the bubble. The flow of the liquid is considered with respect to the coor- 

dinate system X I = X - SX, X 2 = Y - Sy, X 3 = Z - S Z (Sx, Sy, S Z are the X, Y, Z components 
of the vector S). The smallest distance from the gas bubble to the walls of the container 
is large in comparison with the largest dimension of the bubble and hence the walls of the 
container can be assumed to be infinitely distant from the bubble. The velocity V of the 
liquid satisfies the condition 

,T ~,~nU/T (U m are constants) k = (0, 0 i). The pressure where t is the time, ~ = Real ~,e , , 

P of the liquid then satisfies the condition 

P ~ - -p  (dU/dt)X3 + > ; X~ § X.~ § X ~  c~, 

where P is the density of the liquid and P is a function of t. The dependence of P on t is 
determined by the manner in which the container is deformed. We assume that 

(P0, Pm are constants). The flow of the liquid is steady-state (i.e., it does not depend on 
the initial conditions). In the absence of vibrations and deformation of the container [U m = 

Pm = 0 (m = i, 2 .... )] the gas bubble will be a sphere VX~§ V = 0, P = P0. 

The pressure Pg and the volume of the gas are connected by the adiabatic equation 

pgQ  = 

where y is the adiabatic index, Pg0 = P0 + 2o/A0 (o is the surface tension), Q0 = (4~/3) A03. 
It is required to find the motion of the gas bubble with respect to the coordinate system X, 
Y, Z, i.e., to find S as a function of time. 

i. Let T = t/T; x I = XI/A0; x 2 = Xi/A0; x 3 = X3/A0; r = (xl, xi, x3) ; r = Irl; F is 
the surface bounding the region ~xlxix3 occupied by the gas (the free boundary of the region 

occupied by the liquid); H is the mean curvature of F; N = A0H - i; n is the outward unit 
normal to F; E is the velocity of F in the direction n; $ = TE/A0; v = (vi) = TV/A0; p = 

Ti(p - P0)/(PA02); w ~ (I/Ao)dS/dT; v is the kinematic viscosity of the liquid; Re = A02/(vT) 
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is the Reynolds number, P is the stress tensor in the liquid; I = (lij) is the unit tensor; 
P = (Pij) = T2 (P+P0 l) /(pA02) [Piv = -PIij + (i/Re)(Svi/Sxj + 8vj/Sxi)]; ~ is the largest 

o~ 

value of [P- P0[; l "~-~ ([~--Po)/> = Real ~ pme'2mn~; 0 is the largest value of IU[; u =U/U---- 

~eal~ ume2m~iT; = = Pg0T2/(PA02); Pg T2(pg 0T/A0; • pT2/(oA02); X = oT2/(oA0a); ~ = = - 

Pg0)/(oA0 2) = v(Q0~/Q~ - i). 

The equation of the surface F, the Navier-Stokes equations, the equation of continuity, 
and the conditions which must be satisfied on F and in the limit r ~ ~ can be written as 

% = 0 

(Z < 0 inside Qxzx2x3, Z > 0 outside ~xlx~3); ( 1 .1  ) 

Ov ~'o dw o"~ + (v. V) v + VP --  Av + ~-- = O; ( 1 .2  ) 

V.v = O; ( 1 . 3 )  

n.v - -  ~ = O, n . p  + (Pr - -  2;LB)n = 0 on F; ( 1 . h )  

v ~ k - - w ,  pN--~-dTx3+• for r -+oo.  ( 1 . 5 )  

The following equation must also be satisfied 

~x i x 2~ 

It is necessary to find the solution of (i.i)-(1.6) for X, v, p, w in order to determine 
the dependence of S on t. 

2. We will consider the problem (1.1)-(1.6) when ~ is small in comparison with unity. 
We assume that in the limit ~ § 0 

% ... %(o) + e%o), v ~ v (~ + ev(X~, ( 2 .  i )  
p ~ p(0) + ape1), w ~ w (~ + 8w 0), 

From ( 1 . 1 ) - ( 1 . 6 )  and ( 2 . 1 ) ,  we have  in  t h e  M-th a p p r o x i m a t i o n  (M = 0, 1) 

%(0) + Me%(~) = 0 ( 2 . 2 )  

for the equation of the surface r (M) bounding the region ~(M) occupied by the gas; 

-- -- dw(M) ----0; _ _ .  t hv(~,z)+ (2 3) 8v(M) + ( v(~ V) v(M) + M (v (1). V) V(O) -~ V/0("> tlo dT 
0~ 

V.v (M) = O; (2.4) 

lira [e -M (n(M). v - -  ~(M)) fr(M)] = O, ( 2 . 5 )  
e--)O 

lira {e - ~  [n(M)'p + (~)~M) 2~l}(g/))ll(M)] ]r(M)} = 0; 

where n(M), n(M), 

d7 v(m) N M ~ k _ _ w  (M), p(M) N ( I _ _ M ) u p _ _ M ~ x  3 for 

,f .f J' rdxldX'~dx8 ---- O, 
~(M) 

~(M), pg(M) a r e  t h e  q u a n t i t i e s  f o r  n ,  13, 6, Pg 

r -~  oo; ( 2 . 6 )  

for F = F (M). 

( 2 . 7 )  
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Let M = 0. In the zeroth approximation the gas bubble is a sphere r ~ 1 + a, whose cen- 
ter is at rest with respect to the coordinate system X, Y, Z. The flow of the liquid is 
symmetric to the origin of the coordinate system xi, xi, xs. Hence 

%(o) ~ r - -  I --a; 

w (~ = 0; 

o~) /oo  = o, o~?)/o~ = o ;  

v~ )=o, v~ )=o, 
where r, 8, ~ are spherical coordinates [O is the angle between the vectors (0, 0, 
(xl, x 2, x3) (0 ~ 0 s ~); ~ is the angle between the vectors (i, 0, 0) and (xx, xi, 

< iv)]; Vr (~ v0 (~ v* (~ are the r, O, ~ components of the vector v (~ 

The relation (2.7) will be satisfied for any positive value of 1 +a. 
(2.2)-(2.6) and (2.8)-(2.11) that 

v~~ (1 + a)2(da/dx)/ri; 

( 2 . 8 )  

( 2 . 9 )  

( 2 . 1 o )  

( 2 . 1 1 )  

1) and  
o) (o 

It follows from 

( 2 . 1 2 )  

(i+a)3]} (2.i3) p(O) = ~ + ---7---- [~ "1- 1 ~  d,] [ 2r 3 ; 

d~ t {3 (dal2 4 da 2~, 
dx, ~ ~ "-ff kckc] + Ile (t -c  a) d"c + 

( 2 . 1 4 )  
+ ~ [,l - (~ + ~)-3q + ~} = 0. 

3. Let M = i. We will consider the problem (2.2)-(2.7) when x is small in comparison 
with unity. It follows from (2.8) and (2.11)-(2.14) that in the limit x + 0 

%(0) (o) . ,(o) 
~Z(o) + "~m,), ( 3 . 1 )  

v(O) (o) p(o) (o) • ~ • 

w h e r e  X(o)  ( ~  = r - 1; X ( 1 ) ( ~  = I l eRea l  Z Pm cO-,nail; .(o) (o) 
rn=l  (3'~.t - -  2~ - -  4//ZiY[ 2) Re  -~- 8t/lni v(1) = - -  (dx(t)/dJ r/ra; 

p(z) (~ = p - (dix(1)(~ The equations X(o)(~ = 0, X(o) (~ + • 

the surfaces F(o)(~ and F(1)(~ respectively. We assume that when x + (6 I)(~ 

0 determine 

%0) (1) (1) V(l) (1) . . . .  (1) 
Z(o) + • ~ v(~ + "~'(~)' ( 3 . 2 )  

pfl) ~(1) . ~0) w 0) .. (1) O) ~'~ It(0) -t- mF(1), ~ --(0) -t- XW(1)o 

A c c o r d i n g  t o  ( 2 . 2 ) - ( 2 . 7 ) ,  (3.1), a n d  ( 3 . 2 ) ,  i n  t h e  N - t h  a p p r o x i m a t i o n  (N = 0 ,  1 ) ,  we h a v e  

(0) (i) / (o) OPt (o) + ~Z~o) + N• 0 ~%o) + ~Z(~)/= (3.3) 

for the equation of the surface F(N)(I) bounding the region ~(N)(I) occupied by the gas; 

Ovg) O) __ t A .  (t) dW(N) Z" (0) (1) (1) . (0)]. t N ) +  VPI~) + -- ~ [ (v( , ) .V)V(o)+ (V(o).V) ( 3 . 6 )  - -  v o ) l ,  O'~ ~ ~*(N) d'~ 

(I) 0; 
V" v(N~ = ( 3 . 5 )  

- - (i) lira lira [• N i (,,(N) "v - -  ~; , )Ir~l ) ; ]  = O, ( 3 . 6 )  
Z-~0 g~0 

l i m l i m { x - x 8 - 1  fl) { (1) (I) (1) ] [,,(N). p + ~z,~(~) - 2~n(~)) -(N), I~(1) ~ = 0; 
x-~0 e~O (NjJ 

(') ~ ( I  N ) ( u k - - w ( o  w tn, P(N) ( N - - t )  as r - + o o ;  v(to - -  (n't __ Nwg) 0) d'~ ~ X3 ( 3 . 7 )  
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w h e r e  n ( N ) ( 1 )  , 

r ( N ) ( ~ ) .  

L e t  N = 0 .  
and (3.6) reduces 

(I). 
9(N) 

q(N) (~), $(N) (z), Pg(N)(z) are the quantities for n, q, g, 

a s s u m e  t h a t  X ( o )  L" l )  ~ 0 .  T h e n  r(o)t ~*" " = F ( o )  ( ~  ( 3 . 8 )  We 
t o  t h e  c o n d i t i o n s  

where V ( o ) r  ( ~ ) ,  V ( o ) 8 ( ~ ) ,  

T h e  p r o b l e m  ( 3 . 4 ) ,  ( 3 . 5 ) ,  

(3.8) 

pg for F = 

is satisfied, 

nv(1) 
�9 O)  O, ~(1) 2 ~ (o)r O, 
u(o)r ---- - -  F(o) + Re Or 

(i) , (,) (~) (~) r(o) (3.9) Ov(o)~/Or 0 on Ov(o)o/ar O, = -- l;(o)eo (o), -- 7)(0)0 

V ( o ) ~ ( z )  a r e  t h e  r ,  O, r c o m p o n e n t s  o f  t h e  v e c t o r  v ( o ) ( 1 ) .  The 
(3.7), (3.9) has the solution 

(1) __ t O@ . (1) 1 0 *  
U(O)r - -  r ~ sin 0 80 ~: u(0)0 = r sin O Or ~" (3.10) 

where 

U(O)tP P(O) = OTi)r -t- ~'~ \ &,.a r 2 Or + ~2 - -  ~ r sin 2 ~ sin2 0 ' 

~(i) = wk, (o) 
(3.11) 

t w __ R e a l  ~ Um I \ qm(1-r) 
~p = (~" - -  w) ,'~ + y V 6 3 ~ qm + r )  e X 

m = l  gin@ 3qm @ t8qm-l- 18 

X e~'mm~[ sia~O; w = Real ~] ,vme2~= i '  (win = 3u,. (q~ + 3q l  + 
3 m = l  

o o ~ 1 8 ) ;  (l + 8 q m +  ) / ( q m - [ -  o q ~ +  t 8 q m +  q m =  + 

Hence, X ( o ) ( l )  -= 0 and the solution (3.10), (3.11) of the problem (3.4), 
(3.9) is also the solution of the problem (3.3)-(3.8). 

Let N = i. We assume that X(1) (I) _ 0. Then F(1) (I) = F(1)(~ (3.8) 
and (3.6) reduces to the conditions 

,,(1) riO) Ov(~l) t0)r 
~(1)7' ----- ~(I) Or ' 

~ (1)) 
,~, (1) 2 ~ (1) 2 t'~(1)r (0) 0 (1) 

-- P(1)  -t- lle Of-- ~ %(I) -07 ~ P(o) Jr- 11o ()r" ': 

v( 0 \ - (1) ~v(~ ) /8v(1) - (I) (o_)o], I ~ otll~r o 41)0 ,(1) .(0) O [ '~(O)r  OU(O)O 
o0 + or R1)o=~(*)-bTr\  o0 + o," r / sin0 a(p + 

OvO) (1)q~ .,(O ~ 0 on p(o) c(1)q~ ~(o), + Or 

(3.5), (3.7), 

is satisfied, 

(3.12) 

where v(1)r (I), v(1)O (I), v(1)~ (1) are the r, O, (P components of the vector v(1) (I). 
problem (3.4), (3.5), (3.7), (3.12) has the solution 

(i) 1 a~b' (i) 1 0~' 
1;(1)r = r~sin0 O0 ' u(t)O ~ -  rsinO O---~' 

.(o =0 ,  plI~-- _ _ _ +  ~ r s i n  ~0 
v(1)~ O~Or I ~  r ~ Or 

2 , (0) a r  cos_____O_o . 

- -  ~ ( l ) r  ~ r 2 j  s i n ~ O  ' 

+ ./) k, (I) 

The 

(3.13) 

(3.14) 

where ~9, = 1 - -  a o ~m -- ~ (w + w') r 2 + -- + ~0r + m 0 + Real -- + 
r m~l r 
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+ [3m qm + 77t] e-q~'4-  q)m e ~ sin~ 0; w =  :2- Re t-~eal prnum X 
7rt=l 

q~ 4 ( q ~ m ~ - 3 q m + 3 ) + q m  e J-7-e qmrdr 

1 

~ 18~; X [(4m2gg _ 37}t -~ 2~,) Re -~- 8m~i]  (qm -~ 3qm -]- i8qm ~- 

w' = Real 2 wine" ~ a ~  

(Pm* are the complex conjugates of the constants 
stants and functions of r, 

g 
Pm; Wm , ~0, %a, 130 , ~mand~0, ~m 

respectively, and are given by the relations 

a o = Gd~ - -  % l~=1 ~ ~o = (F - -  2G) d'~, w ' ~ - - 2 a m - - 2 ( q ~ + t ) e - q ' n ~ , ~ =  
"0 0 

1 
= 2 .f (4E + F) e-2mui~d'c + (q~ -~- l)'th qm -- qm ~)m I~'=1 "~ 2 (q~ + 4) (r)m~[r=l, 

th qm -- qrn o 
1 

2w,'~ + 2a~ + (q~ + 3q~ + 2q~ + 2) e-q"~m = 2 S (2E + G) e-~'~i~d~ - -  q~ ]~=~ + 4~m [~=l, 
0 

v(o) ( 

cosO /57r ~<~ ~:i '  

F = ].te "~(~) ~(1) 2 O~(o)r "~ (1) 
-- ~ -- t~(~ + lie Or + ~ r V ( o ) e  

OV(o)O G -  ,~<,) 0 [r'v(o)r (') v~O 

(; 1 i 
(Do ~ ---~ t'-= % r2dr + re dr 

.3 r 
I r 

cl).~ = __ T cP~r2dr + r~" - -  , 

(+; ; ) t Be  Hor,~dr + r ~ Hodr (Po -- 3 
1 

are coN- 

[ S s ] = T:h___.~., 
q ~  q~r (q~r + t) e-q~ ~ t tm (sh q,~r -- q,.r ell qmr) dr + (sh qmr -- q,~r ch q,.r) Hm (qmr + 1) e-qm~dr , 

1 r 

1 1 

0 0 

a~,(O)/dT ( 3 ) H u..._~(~)_Z_/Z c) 2 O z 2 O 8 
,-'~ ~in 2 o 7 ,  -'~ - 7 a,.~ - 7 o--7 + 7 ~)'  

Hence, X(1) (1) __ 0 and the solution (3.13), (3.14) of the problem (3.4), (3.5), (3.7), (3.12) 
is also the solution of the problem (3.3)-(3.8). 

4. Let e and • be small in comparison with unity and suppose that e is small in com- 
parison with • Then the relations 

X ~ %(o); 

(1) (1). p(O) (i) (1). v = v (o) + 8v(o) + ~• P = + gP(o) + e• (4. i )  
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r... (i) (i) 
w .... (o) + exw(1) (4.2) 

along with (2.8), (2.11)-(2.14), (3.10), (3.11), (3.13), (3.14)determine the approximate 
solution of the problem (1.1)-(1.6). The solution [with use of (i.i)] satisfies (1.3), 
(1.5), and (1.6) exactly and (1.2) and (1.4) approximately, to within terms small in com- 
parison with e• 

Note that according to (i.i), (2.8), and (4.1), the gas bubble is a sphere and S is the 
position vector to the center of the bubble. Using (3.11), (3.14), and (4.2), we find 

S = Ileal ~ S,~e2'~it/r + Wt k + S,), ( 4 . 3 )  

where S m = A0e(w m + • p ) / ( 2 m u i ) ;  W = ( h 0 / T ) s •  So i s  c o n s t a n t .  The dependence  o f  S on t 
is determined approximately by (4.3). In particular, it follows from (4.3) that the gas 
bubble moves along a straight line parallel to the Z axis and its motion is composed of a 
vibration and a displacement in the direction k (for W > 0) or -k (for W < 0). Hence, vi- 
brations of the liquid (time variation of the velocity and pressure of the liquid) can in- 
duce a nonzero average displacement of the bubble. The cause of this displacement is the 
fact that the conditions for motion of the bubble up and down the axis of vibration of the 
container are not identical. 
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FLOW STRUCTURE OF A ROTATING LIQUID AFTER MOTION OF A BODY IN IT 

V. G. Makarenko and V. F. Tarasov UDC 532.527 

We report the results of an experimental study of the flow structure of a column of 
liquid which is initially rotating rigidly, after a body is pulled through it in a direction 
parallel to the axis of rotation. It is shown that the general qualitative result of the 
motion of the body through the rotating liquid is the formation of a system of cyclone and 
anticyclone vortices with oscillatory motion of the liquid in them. The properties of these 
vortices match those reported in [i]. 

The experimental apparatus is shown schematically in Fig. i. A transparent vertical cyl- 
indrical container 5, in which a liquid rotates with a constant angular velocity m. The 
motion of the initially rigidly rotating liquid is perturbed by one or several bodies 6 which 
rotate with the container and complete one pass through the liquid from the bottom of the con- 
tainer to the free surface of the liquid 3 in a direction parallel to the axis of rotation. 
Thin (0.5 mm) plates in the shape of a circle or a section of a circle were used as the bod- 
ies. The plates were mounted parallel to the bottom on thin rods 4 of identical length, 
which were attached to the disk 2 above the free surface of the liquid. The disk was rotated 
together with the container and was displaced upward with the help of the rod I. Until the 
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